
NASA-TM-112061

Nttmerical Results on the Transcendence of Constants

Involving n, e, and Euler's Constant

David H. Bailey

February 27, 1987

RNR-87-001

Abstract

Let x = (xl, x_,... ,x,) be a vector of real numbers, x is said to possess an integer

relation if there exist integers a+ such that atxl +a2x2 +". +a,,x, = 0. Recently Ferguson

and Forcade discovered practical algorithms [7, S, 9] which, for any n, either fred a relation
if one exists or else establish bounds within which no relation can exist. One obvious

application of these algorithms is to determine wlmther or not a given computed real

number satisfies any algebraic polynomial with integer coefficients (where the sizes of the

coefficients are within some bound).

The recursive form of the Ferguson-Forcade algoxithm has been implemented with

multiprecision atithinetic on the Cray-2 supercomputer at NASA Ames Research Cen-

ter. The resulting computer progq'am has been used to probe the question of whether

or not certain constants involving a', e, and 7 satisfy any simple polynomials. These

computations established that the following constants cammt satisfy any algebraic equa-

tion of degree eight or less with integer coefficients whose Euclidean norm is 10 _ or less:

e/a', e + 7r, log, a', 7, • "_, 7/e, 7/lr, and log, 7. Stronger results were obtained in several

cases. These computations thus lend credence to the conjecture that each of the above

mathematical constants is transcendental.

The attthor is with the Numerical Aerodynmnic Simulation Systems Divisior

Ames Research Center, Moffett Field, CA 94035.



Introduction

The problem of finding integer relations among a set of real numbers goes back to

Euler, who showed that the Euclidean algorithm when applied to two real numbers

either terminates, yielding an exact relation, or else produces an infinite sequence of

appr'_ximate relations. Hennite asked for generalizations for n > 2. Jacobi responded

with an algorithm that was subsequently modified and developed by Perron, Bernstein,

and others. Poincare suggested an algolithm that was later refined by Bt_an. In the case

where a relation does e.xist, Brun's algorithm has been proven to terminate and produce

a relation when n = 3. However, none of these algorithms has been proven to work for

n > 3, and numerous counterexamples have been found. In the case where tile entries of

a vector x have no exact integer relations, some of these algoritlnns provide a sequence of

lattice approximations that converges to the line between the origin mid x in the angular

sense, but none produces a sequence that converges to the line in the absolute distance

sense.

A breakthrough in this area occurred in 1979, when Fer_tson and Forcade [7, 9]

discovered a recursive algorit|ml that is guaranteed to find an integer relation for any

vector x of any length n (if a relation e_sts). If the vector x does not satisfy an exact

relation, then this algorithm produces a sequence of lattice approximations that converges

to the line in the absolute distance sense (not just in the angular sense). Further, their

algorithm provides a means of establishing firm lower bounds on the size of any possible

relation. More recently Ferguson [8] found non-recursive algorithms that also have these

properties, although these non-recursive algorithms are significantly more difficult to

state and to implement on a computer.

These new algorithms have numerous possible applications, including factorization

of polynomials, study of "Gauss sums", analysis of possible relationships between the

fundmnental constants of physics, and the analysis of the cosmological stability of the

solar system. The most obvious application, however, is to determine whether or not a

real number c_ whose value can be calculated on a computer is the root of any algebraic

polynomial with integer coefficients. For this application it suffices to apply one of these

algorithms to the (n + 1)-long vector x = (1,a,a_, ... ,ct_). If a relation is found, then

these integers are the coefficients of a polynomial satisfied by the number a. Conversely,

if a computation establishes a bound within which no relations e.xist, then c_ cannot

satisfy any algebraic polynomial whose coefficients are within this class. This method

thus provides a computational technique for grasping the property of a nmnber being

algebraic.

A recursive form of the Ferguson-Forcade algorithin has been implemented by the

author on the Cray-2 supercmnputer operated by the Numerical Aerodynanfic Simnlation

System at NASA Ames Research Center. This program employs a package of high-

perfmanance multiprecision arithmetic routines. It is necessat T to use nndtiprecisiou

arithmetic because the Fergnson-Forcade algorithm requires an extraordinarily high leveI

of numeric precision to probe for integer relations of higher degree. The computer



time requirement is correspondingly high for seeking these high degree relations,but a

number of useful computations of thissortcml be per'formed on a supercomputer such
as the Cray-2.

The followingconstants were selectedfor analysisby the above procedure: e/a-,e +

rr, log, 7r, 7, e"y, 7/e, 7/_', and log_ 7. Note that 7r, e, and e_ were not included because

these are known to be transcendental [3]. There are of course mmxy other interesting

constants that could have been selected. It is hoped that some of these others can be
analyzed in the future.

Tile Ferguson=Forcade Algorithm

Tilefollowingisa precisestatement of the particularversionofthe algorithm that was

implemented for these applications.A fulldiscussionof the mathemtical theory behind

thisalgorithm may be found in [9].Lower case symbols willbe used to denote vectorsof

realnumbers and upper case symbols willbe used to denote matrices of realnumbers.

The norms of the vector x and the matrix A are defined as the Euclidean norms:
ft..m=====

T "

[AI = a,i

The transpose of the row vector x and the matrix A will be denoted by .r* and A t,

respectively. Finally, In will be used to denote an identity matrix of size )_ x ))..

Let .r denote an )).-long input vector of real numbers. To izfitialize the calculation set

P = XXtIn -- x_.r. In other words, P_i = -xia'j if i _: j, and PiJ = _,i#i x_. Now set

;r' = .r, P' = P, and A = In. Then perform tim procedure ALG (n,x',P',A), which is
defined below.

If ALG (n,x', P', A) ternfinates, then the original row vector x, when nmltiplied on

the right by the inverse of the current A matrix, should yield one entry that is within

a reasonable tolerance of maclfine zero. The colunm of A -l that produced this zero is

then the desired relation. If ALG (n, x', P', A) completes but does not terminate, then

any possible integer relation r must satisfy It[ > [x[2/[AP[, where z and P are the initial

arrays and A is the current A matrix. This fact is proved in [9]. At this point the process

may be continued by performing ALG (n,x _, P_, A) again, and repeating until eitlmr a

legitimate relation is discovered or else precision is exhausted. One can tell that precision

has been exhausted if the algorithm terminates with a matrix A, but no entry of xA-

is sufficiently close to machine zero.

The function of the procedure ALG (n, .r, P, .4) will now be described.

ALG (1, x,P, A): If x = 0 then terminate: otherwise set P = 0 and A = 1 and exit.

ALG ()), .r, P, A) for )) :> 2: If some entIT of .r is zero (or within a reasonable tolerance

of machine zero), then terminate. Otherwise, perform the following steps:



I. Find a row of P with the smallest norm. Exchange thisrow with the lastrow of P,

and alsoexchange the corresponding rows of .4 and entriesof x.

2. Construct the (n - I) x (n -i) matrix Q = aatI__n -at a, where the vector a =

(.rl/x,_,x2/;r,,... ,.r,_i/x,_). Set u' - u, Q' - Q, and B = [,,-I. Then perform ALG

(17 - 1, u', Q', B). If it terminates, then set c - O. Otherwise repeat it until tile condition
..

],,I 11,I
IBQTT" I <

I

issatisfied.Here IV denotes the (n - i)x I_matrix consistingof allrows of P except the

last,and v isthe lastrow of P. When itissatisfied,set c to the integervector closestto

B.'/I.I

3. Set

and replacex by xC -I, P by CP, and A by CA.

Actually,itisnot necessary ever to invertthe nmtrices A and C. The author's pro-

gram carriesboth A and A -I through allstepsof tileabove procedure. For initialization,

both A and .4.-l are set to the identity.In the firststep above, the columns of .4-I are

exchmlged iustead of the rows. In the third step, the matrix B -I and the negative of c

are used to construct C -_, and finallyA -I isreplaced by A-IC -I.

There issomething of a numeric difficultyin being able to clearlyrecognize a zero

entry in the firststep above. The author fotmd that itwas satisfactoryto examine the

entriesfor eitherbeing within twelveorders of magnitude of the "machine epsilon" (i.e.,

10-_', where u, is the number of words of precisionused), or else being twenty orders

of magnitude smaller than the other nonzero entries. It is necessary to allow thislast

condition because repeated constructionsof the u vector from the x vector in the second

step above can renormalize these numbers far above machine epsilon.

M ultiprecision Techniques

Unforttmately, a very high level of numeric precision is required to perform the

Ferguson-Forcade algorithm for values of n higher than three. In fact, the calculations

reported here employed either 0,144 or 12..288 digit precision. For this purpose a package

of high-performance multiprecision arithmetic routines was employed. These routines

are similar to the ones previously used by the author in a high-precision computation of

rr [1]. Several improvements have been made in these routines since that computation.
and these differences will be summarized here.

The main difference between these computations and those described in [1] is that an

ordinary complex f_t Fourier transform (FFT) is used here for multiplication instead
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of dual plime modulus transforms. Although the complex FFT technique fails due to

numeric difficulties for very high precision (nfillions of digits), it runs approximately five

times faster than the prime modulus technique on the Cray-2 mid thus is preferable

for this application. Another difference is that the radix of the multiprecision number

representation is l0 s instead of 10 r as in [1]. This allows data to be split into two words

containing three digits each upon entry to the FFT nmltiply routine.

The FFT routine used in this program is currently the fastest software available to

perform a one-dimensional FFT on the Cray-2. Details of this FFT algorithm may be

found in [2]. Multiprecision nmltiplication is performed using this FFT as follows. Let

x = (x0, a't," "', x,_-! ) and y = (.a/0,yl," "- • Y,,-! ) denote the radix-b representations of two

multiprecision munbers. Extend x aaid y to length N = 2n by appending n zeroes to each.

Then the product = of x and y (except for releasing carrys) is merely the convolution

N-!

:k = Ck(.r, y) = Xj. /k-j
./=0

where tim subscript k - j is to be interpreted as k - j + N if negative. This convolution
is not evaluated directly but as

C(x, y) = F-l[F(x)F(y)]

where F mid F -1 denote the discrete Fourier trmlsform and its inverse:

N-I

Fk(;r) = zje
j----O

1 N-!

j=O

Since the input data x and//and the output data : are all purely real, a technique

described in [6] is used to reduce both the forward ruxd reverse trmisforms to complex
transforms of one lower order, which drmnatically reduces the run time.

Multiprecision division mid square root extraction are performed using forms of New-

ton's iteration that require only multiplications, and thus they piggyback off of the mul-
tiply procedture described above.

It should be noted that it is not necessary to perform all operations of thc Ferguson-

Forcade algorithm using high precision. For instance, the computation of matrix norms

can always be done in single precision, although the author fom,d it necessm'y to manually

maintain the exponent, since otherwise even the very high dynamic range of the Cray

floating-point format (10 2'4_) occasionally overflows. Also. in the early stages of the

algorithm, the .4 matrix in particular contains integers of only modest size, and a simple

"schoolboy" multiplication procedure suffices for operations involving these munbers.

The attthor's multiprecision multiply routine titus checks the number of nonzero words of
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precisionin the arguments and performs the FFT multiply algoritlun only if the actual

precision of both arguments is above a certain level.

Algorithms for Computing the Constants

The coustmlt r was computed using Borweins'

which was discovered in 1985 [5].

and y0 - _- 1. Iterate

_k+l "--

ak+l "-

quartically convergent algoritl,nl,

TMs algorithm is as follows: Let a0 = 6- 4v_2

1 - (1 - '/4
1 + (I-
ak( I + Y_+l )4 _ 22_+3yk+1( i + Yk+l + Y_+l )

Then a_ converges qum'tically to 1/rr: each successive iteration approximately quadr_tples

the number of correct digits iu the result.

Euler's constant -_ was calculated using the following formulas, which are an improve-

ment of a technique previously used by Sweeney [10].

2" _ 2 '_ "_ 1 1

3' -- e2,,m_o(tt;;1)!t_..ot; 1 nlog2 -4- 0(_)

1

log2 = _ (2k- 1)3 _k-l
k:ffit

Unfortunately, this procedure exlfibits only linear convergence. No quadratically con-

vergent algorithm is yet known for 7. Nonetheless, it is feasible to compute 7 to the

precision required for these calculations without expending too much computer time.

Exponentials and logaritl_us (mid e itself) were computed using quath'atically con-

vergent algorithms, which are also due to the Borweius [4]: The algorithm for computing
e* is as follows.

First we need to define the fimctions P(s) and Q(s). To define P(s), set x0 = s and

y0 - 16/(1 -s 2 ). Then iterate the following until convergence:

"2xk
Xk+ 1 --

x_ -I- 1

Y,+, = y, ( Xk _. 1) 2'-"

The extraction of 2k-th roots in the last line is performcd using Newton's iteration with

a level of precision that doubles at each step. P(_) is then defined _ the limiting value

of Yk. To define Q(s), set a0 = 1, b0 = ._, a_ = 1, and b_ - v/1- ._. Then iterate the

following until convergence:

a_. + h_.
(tk+ 1
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bk÷ 1 _

ctk+ l m 9

Q(s) is defined as tile ratio of the limits of a and a'. With P(s) and Q(s) defined, the

exponential fimction of t may be evahtated by using Newton iterations (with a variable

level of precision as before) to solve the equation Q(s) = t/Tr for s, and then evaluating

P(s). As a starting value for these Newton iterations, the author has found that a single

precision calculation of the following is satisfactory:

0.028762 l/p when p < 2.5
So = 1-e 2"°s-p when 2.5<p<:30

10 °434{2-p; when p > 30

where p = t/rr. The natural logarithm of = can be obtained by using Newton iterations

to solve P(s) -- z for s, mid then evaluating 7rQ(s ).

Numerical Results

Computer programs employing the above algorithms, including the nmltiprecision

routines,have been implemented in the ANSI Fortran-77 language. The Fortran compiler

on the Cray-2 was able to automatically vectorizeahnost allloops in these codes. In the

few cases where loops are vectorizablebut not automatically vectorizedby the compiler.

vectorizationwas forcedwith directives.As a result,these programs run at nearly 100

miUion floating-pointoperationsper second on one processorof the four-processorCray-

2. No attempt was made to utilizemore than one processor. Most of these eight runs

required on the order of two hours of processingtime. Normally itwould have been very

difficultto obtain thismuch computer time fox"such ml application. However, in early

1987 the Cray-2 and au.,dLlaryequipment were moved to a new building,and before full

production usage resumed some extra time was available.

The resultsof these calculationsare listedin the table 1. The precisionfigureslisted

are the number of decimal digitsof precisionused. The bounds listedare the minimum

Euclidean norm of the coefficientsof any possibledegree eight polynonfialthat the given

constant could satisfy.
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Constant Precision Bound

log 7r

7

_r/e

7/_

log"y

12,288

12,288

6,144

6,144

12,288

6,144

6,144

6,144

6.1030 x i014

2.2753 x I0 Is

8.7697 x I0 °9

3.5739 x I0 °_

1.6176 x 10 Ir

1.8440 x 1011

6.5403 x i0°9

2.6881 × 10 t°

Table 1: Lower Bounds for the Euclidean Norms of Degree Eight Polynomials
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